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1. Introduction

Many nonlinear models for vibrations of continuous systems contain cubic nonlinearities. Nonlinearities add to the
complexity of the systems, which make exact analytical solutions impossible to obtain. Approximate analytical solutions
are sought for such system as a second best alternative and perturbation methods are widely used for this task. The
nonlinearities may appear in a variety of forms including algebraic, differential or integral structures. Regardless of the
specific forms of the nonlinearities, they can be classified with respect to their common natures such as quadratic or cubic
nonlinearities. To understand and analyze the effects of arbitrary quadratic and cubic nonlinearities on the solutions, an
operator notation suitable for perturbation analysis was developed [1]. The motivation behind the study was to compare
the direct-perturbation methods with discretization-perturbation methods. The discussion was limited to single mode
approximations of free vibrations. Later the analysis was generalized to infinite number of modes for forced vibrations [2].
The advantages of direct-perturbation methods were discussed in detail. Comparison of both methods for a parametically
excited linear system expressed by arbitrary linear operators was also done [3]. It is concluded that while infinite mode
results agree with each other, finite mode truncations of both methods yield different results with direct-perturbation
method producing more precise solutions. In order to compare results of different versions of method of multiple scales
and decide which method yields better steady-state solutions, an arbitrary cubic nonlinear system was treated [4]. For
coupled partial differential systems, a solution procedure for one-to-one internal resonances was developed [5]. Using the
same model of [5], possible internal resonances were classified [6]. For a general cubic nonlinear system, three-to-one
internal resonances were further considered [7]. Two-to-one internal resonances were analysed for arbitrary quadratic
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nonlinearities [8]. The new operator notation developed and used in the previous studies [1-8] was adopted to understand
the effects of nonlinearities by others also (see [9,10] for example).

In a very recent work [11], additional linear and cubic operators with time derivatives were incorporated into the
model. In contrast to the mentioned previous studies with cubic nonlinearities, which employ only spatial operators,
additional linear and cubic operators containing spatial as well as time derivatives were included. This enables analyzing a
more general class of continuous systems such as gyroscopic systems, which are encountered in axially moving media or
pipes conveying fluids.

In this work, the work of [11] is extended to include three-to-one internal resonances. A general solution procedure is
developed for arbitrary operators first. Method of multiple scales, a perturbation technique is used in the analysis.
Amplitude and phase modulation equations, steady-state solutions and their stability are discussed in a general sense. The
solution algorithm is applied to two different problems: (1)nonlinear vibrations of stretched axially moving Euler-
Bernoulli beam, and (2) nonlinear vibrations of axially moving viscoelastic beam. While the first application contain
integro-differential type and the second differential type, both models possess the common feature of being cubic
nonlinear, which enables the algorithm developed to be applied directly to these equations. The application problems are
discussed in detail. Stability analysis is presented and frequency-response curves are drawn to depict the effects of various
parameters on the vibrations of the system. Energy transfer between the modes are displayed in the figures. Apart from the
examples considered, the general solution procedure developed may be applied to a wide range of physical problems.

2. Equation of motion

The dimensionless model considered is

W +Li(W)+Ly(W)+eL3(W) = €F cos Q t +&{Cy(w, w, W)+ Co (W, w, W)} @)

Biw)=0 x=0, B,w)=0 x=1 (2)

with dependent variable w(x, t) representing deflection, and independent variables x and t being the spatial and time
variables, respectively. Note that there may be more than one spatial variable and a 3-D problem in spatial variables x, y
and z has not been excluded from the analysis. L;, L, and Ls are linear differential and/or integral operators. C; and C, are
cubic nonlinear operators. F and Q represents external excitation amplitude and external excitation frequency,
respectively. B; and B, are linear operators of boundary conditions. The representation of boundary conditions should
be expressed in a modified form for a 3-D problem.¢ is a small dimensionless physical parameter. Dot denotes partial
differentiation with respect to time. To capture the effects of gyroscopic systems, additional linear and cubic operators (i.e.
L,, L3 and G;) containing time derivatives are included in the model.

Note that model (1) is a fairly general model and any vibration problem that can be cast into the formalism of Eq. (1) can
be solved approximately through the algorithm developed in the following analysis. A restriction of the boundary value
problem comes from the boundary conditions, i.e. they are assumed to be linear. Furthermore, operator L; is symmetric
and L, is skew symmetric with respect to boundary conditions. This introduces some simplifications when calculating
solvability conditions [12]. If the specific problem contains nonlinear boundary conditions or the operators L; and L, do not
possess the mentioned properties with respect to boundary conditions, the general solution algorithm cannot be directly
applied to it. This case needs further analysis since the solvability condition brings more terms for nonlinear boundary
conditions, which are hard to express in a general way. Although the boundary conditions given here represent a 1-D
problem such as normalized length, in fact the solution algorithm is more general than that and can be successfully applied
to 2 or 3-D problems in spatial variables. Note that both equations of motion and boundary conditions should be expressed
first in a non-dimensional form for applications.

The cubic operators C; and C; may not be symmetric with respect to the inner variables and possesses the property of
being multilinear. See Ref. [11] for details.

3. Perturbation solution

The method of multiple scales [13] is applied directly to the model to find the general solution of Eq. (1). The following
expansion for w(x, t) is assumed

WX, To, T1:8) =wo(X, To, T1) +ew1 (X, To, T1) + - - - (3)
where To=t is the usual fast time scale and T, =¢t is the slow time scale. Time derivatives are expressed in terms of fast and

slow time scales as follows

d
a=D0+8D1+"' (4)
dz

e :Dg+28DOD1+ (5)
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where Dy = 6/0T,. Inserting Eqs. (3)-(5) into Egs. (1) and (2) and separating at each order of ¢, one obtains
0(£°)D3wo +Ly (W) +La(Dowp) =0 (6)

B1(w0):0 at x=0, Bz(Wo):O at x=1 (7)

0(e")D3w1 +Li(W1)+La(Dowy) = —2Do D wo—La (D1 wo)—L3(DoWo) +F cos Q To +C1(Wo, Wo, Wo) +C2(DoWo, Wo, Wo) (8)

Bi(w;)=0 at x=0, Byw;)=0 at x=1 (9)
At 0(£%), two arbitrary modes of frequencies w,, and w., (v, > ®,) are assumed to interact through internal resonances
Wo(X, To, Ty) = An(T1)e " ™Yo (X) + An(T1)e " 0¥ y(X) + Am(T1 )"0 Yin (%) + A (Ty )e 7m0 Y 1 (x) (10)

where A, and A, are complex amplitudes and their conjugates, respectively. Y,(x) satisfy the following equations and
boundary conditions,

Li(Yn)—2Yn+iwnla(Yn) =0, n=1,2,... (11)
B1(Yn):0 at x=0, Bz(Yn)ZO at x=1 (12)

Due to the dissipative term at the zeroth order, Y,(x) may not be real and the complex conjugate of the function is
incorporated in the zeroth-order solution (10). The above equation and boundary conditions constitute an eigenvalue-
eigenfunction problem. w, are the eigenvalues and Y,(x) are the eigenfunctions of the system, respectively. For continuous
system, it is clear that there are infinite number of eigenvalues and corresponding eigenfunctions. Note that under some
circumstances more complex mode interactions may occur for the system considered. This work, however, is limited to
external excitation of one of the modes and excitation of another mode via 3:1 internal resonance.

Upon substitution of solution (10) to the right-hand side of (8) yields

D3wy +L;(wy)+Ly(Dowy) = —2D; (inAne oY, —icopAne 10V ) + icomAme' oYy —immApe @m0 Y )
—L>(D4 (Aneiw"TO Yn +Kneiiw"TU?n +AmeimeU Ym +Kmeiiwm-r07m))
) A o A R A
—L3 (lU)nAn ew)"To Yn —lCUnAnEﬁm" To Yn + la)mAme“"'" To Ym —lwmAme*""'"Tﬂ Ym) + j F(elQTg + e—xQTO )
+C1(Ane Yy +Ane” Y+ A€ n 0 Yy + Ame OO Y i,
Anew}nTg Yn +Ane—m),,T07n +Amew"”T° Ym +Ame—lw,,,Tg?m, AnelwnTo Yn +Ane—m),.T07n +Amelme0 Ym +Am€7"‘)'"TUYm)
+Ca(iwpAne Y, —iw,A e Y, +iwnAme T Yy —iwmAme " OnT0Y
Ane oy, 4 A e oY 4 ATy, + A e OnToY A el ToY, + A e i ToY, 4 Ay el@nToY, 4+ A e Ty, )y (13)

Bi(w;)=0 at x=0, By(w;)=0 at x=1 (14)

Under the assumed resonances
Q=aw,+eoy (15)
Wm =3wp+Ep, (16)

where the external excitation frequency is near to the nth natural frequency and the mth natural frequency is excited via
3:1 internal resonance. ¢, and p, are detuning parameters of order 1. Using the multilinearity properties of the cubic
operators with the resonance conditions, Eq. (13) resumes the form

D3wy 4Ly (wWq)+Ly(Dowq) = —2iw,D1Ane 10 Y, —2iwm D1 Ay e 10 Yy —D1 A€ oLy (Yn)—D1 Ame oLy (Yn)
—iwnAne O Ly (Yn)—iomAme O Ly (Yn) + %Fei“’"TO elonh
+Ageimeoe_ip"Tl {C1(Yn, Yn, Yn)+i0nCo(Yn, Y, Yn)}
+ A A€o THC, (Y, Vi, Vi) + €1 (Y, Yim, V)
+C1(Yn, Yo, Ym)—ion(C2(Yn, Yin, Yi) + Co(Y, Y, Ym)) +i0mCo(Yim, Y, Y )}
+A%Kneiwnro {cl (Yn, Yna 7n)"’cl(Yn, 7n, Yn)+c1 (Vn, Yn, Yn)
+iwn(c2(Yn, Yna Vn)"‘cz(yn,?n, Yn)_CZ(Vns Yna Yn))} +Aﬁ12m6iwm—ru {Cl (Ym, an, Vm)
+C1 (Ym= 7m, Ym)+c] (Ym, Ym, Ym)+iwm(c2(ym, Ym,YmH”CZ(Ym, Vm, Ym)*cz(ym, Y, Ym))}
+AnAnAmem T {Cy (Yn, Y, Ym) +C1 (Yn, Yim, V) +C1 (Y, Yo, Y1)
+C1 (Yn, Yn, Ym)+cl (Vn, Ym, Yn)+cl (Ym, Vn’ Yn)+iwn(C2(Yn= Vn, Ym)+c2(yn, meyn)*cz(vn, Yn, Ym)
_CZ(Yn, Yma Yn))"‘iwm(CZ(Ynh Ym?n)"‘cz(ym, 7n, Yn))}
+AnAmEm eiw"To {Cl (Yma Vm, Yn) +C1 (le’la Yl’ls 7m) + Cl (Yn, Ym, 7m)
+C1 (Ym, Ym, Yn)+c1 (7m= Yn, Ym)JFcl(Yn,Vm, Ym)
+in(C2(Yn, Yin, Yi) +Ca(Ya, Yin, Ym) +i0m(Ca(Yim, Y im, Yn) + o (Y, Yo, Yi)—Co(Y i, Yim, V)
—C3(Ym, Yn, Ym))} +cc+NST (17)
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where cc stands for complex conjugates of the preceding terms and NST stands for non-secular terms. A solution for w,
may be assumed in the form

Wi (X, To, Tr) = @p(X, T ™ + @y (x, Ty )"0 +cc+ W(X, To, Th) (18)
where W(x, Ty, T;) represents solution associated with non-secular terms and ¢, and ¢,, represent solutions associated
with secular terms. Substituting solution (18) into Eq. (17) and (14) yields after separation to relevant modes

— 2@, +Li (@) +iwnLy(¢,) = —2iwnD1AnYa—D1AnLy (Yn)—icwnAnLs (Yn)
1. _ . o _ _ o . _ _

+ iFem"Tl +AiAme'p"Tl {C] (Ym, Yn, Yn)+cl (Yn, Ym= Yn)+c] (Yn, Yn, Ym)*lwn(cz(yn, Ym, Yn)
+C2(77’11 ?n, Ym))"’imeZ(Ym, 77’11 ?n)} +A%Kn{cl (Yn, Yn,vn)'i‘cl (Ym 7”5 Yn)
+C1 (Ym Ym Yn)+iwn(c2(Yn, Ym Yn)+c2(yn, Yn, Yn)*cz(yn, Yn= Yn))}
+AnAmAm{cl (Ym, Ym, Yn)+cl (me Yn> Ym)+c1 (Yn, Ym, Ym)
+Cl (Ym, Ym, Yn)+cl (Ym, Yna Ym)+cl (Yn, an, Ym)+iwn(c2(Yn, Ym, Ym)+C2(Yn, Ym, an))
+iwm(c2(ym, Ym’ Y,,)+C2(Ym, Yn, Ym)*cz(ym, Ym, Yn)*cz(ym, Yn’ Ym))} (19)

Bi(p,)=0 x=0 By(p,)=0 x=1 (20)

— W2 +L1(@) +iOmLa (@) = —2iwmD1AnYm—D1AnLy(Yim) —iomAmLs (Ym)
+A§;eim"ﬂ {C1(Yn, Y, Yn) +i@nCo(Yn, Yn, Yn)} +A,2nKm{C] Y, Ym, Ym) +C1(Ym, Yim, Ym)
+Ci(Ym, Ym, Ym) +i0m(Ca (Y, Yim, Yim) +Co(Ym, Yim, Ym)—Ca(Yim, Yim, Yim))}
+AnZnAm{C1 (Yn, ?ns Ym)+cl (Yn, Ym,vn)+cl (Yma Yna 7n)"’cl (Yn, Yn> Ym)
+C1 (7"’ Yo, Yn)+cl (yma Yn, Yn)+iwn(cz(yn, Yn, Ym)+C2(Yn, Ym,vn)*cz(vna Yn, Ym)
_CZ(Vn» Ym, Yn))"’iwm(CZ(Ym, Yns ?n)+c2(ym,7n, Yn))} (21)

Bi(¢,)=0 x=0 By(@,)=0 x=1 (22)

Since the homogenous parts of Egs. (19) and (21) have non-trivial solutions, non-homogenous equations have a solution
only if a solvability condition is satisfied [13]. For the present model, with L; symmetric and L, skew symmetric with
respect to linear boundary conditions (See the discussions in [12]), the solvability condition is

D1 An+KinAn—Fr€ T —kynA2A 0 —KsnmA-Ame? T —KanmAnAmAm = 0 (23)

D1Am +kimAm—komA2 Am—KksmnAde™nT —kymnAnAnApn = 0 (24)

Note that if the mth mode is excited through external excitation, the complex amplitude modulation Eqs. (23) and (24)
should be slightly modified with the forcing term appearing in (24) rather than in (23). The coefficients are

. 1o
Kin = — 1la),,_fOY,,L3(}’n_)dx (25)

lenfgynyn dX+f0YnL2(Yn) dx

1 [ FY, dx
fom o 2JofYndx (26)
lenfOYnYn dX+f0YnL2(Yn) dx
Kop = f(l)yn{cl (Yo, Y, Yo) + C1(Yn, Yoo, Y) +C1 (Y, Yo, Yo) +i00n(Co (Y, Yo, Yi) +Co(Yn, Y, Ya)—Co (Y, Yo, Yn))} dx 27)
! 2icn [gYnYn dx+ [o¥nLa(Yn) dx

Kanm = fé?n{cl Y Yo, Y) + G (Y, Yo, Yi) + G (Y, Yo, Y)—i0n(Ca (Y, Yin, Y) + Co (Y, Yo, Yi)) +i0mCa (Y, Y, Y )} dX

" 2icon [YaYy dx+ [1V Lo (Yn) dx
(28)

kanm = fg)vn{cl (Y, ?m, Yn)+Ci (Y, Yn,vm)+cl (Yn, Ym, ?m)+cl (Ym, Yim, Yn)+C (?ma Yo, Ym)
+C1 (Yﬂs ?”b Ym)"‘iwn(ci(yna Ym,_?m)‘FCZ(Yn, 7m,_an))"‘i(l)m(CZ(Ym» ?”b Yn)

+Co(Yim, Yn, Ym)—Co (Y, Yim, Yn)—Co(Y m, Yn, Yim))} dx (29)

2in [oYnYn dx+ [oYnLa(Yn) dx

f(l)Vm{G (Yn, Yn, Yn) +i0nCa(Yn, Yn, Yn)}
kSmn = N 1 — 1o (30)
2i0m [oYmYm dx+ [oY mLo(Ym) dx
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All coefficients have real and imaginary parts. Representing the complex amplitudes in polar form
An= %an(Tl )eiﬁ”(Tl) (31)

substituting into Eqs. (23) and (24), separating into real and imaginary parts, one finally has the amplitude and phase
modulation equations

) ) 1 1 ) 1 ,
ah = —Anking +2(far COS Py —frr SINY,) + Zaikznw Za%am(kgnmx COS Anm—K3nmi SIN Anm) + Zanar2nk4nmR =F1(an, am, Anm, V)
(32)
/ 1 3 1 3 1 P 1 2 N
am = —amKimr+ a aykomr+ a a5, (Ksmnr €OS Anm +Ksmnr SIN Apm) + ] a5 amKamnr = F2(Gn, Gm, Anm, V) (33)
) 2 ) 1, 1 o 1, i
Yn =0On+Kin— . (far siny, +far cosy,)— 2% kani— i Anm(K3pmr SN Anm + K3pmi €OS Anm)— i A kanmr = F3(@n, Gm, Anms V)
n
(34)
) 1, 1a ) 1, 6 )
Jnm = Pp—Kimi + — @G komi— == (Ksmnr Sin Anm—Ksmni €0S Anm) + — G5 Kamnr + 3K1n1— — (far SIN y, +far cos )
4 4an 4 an
3 3 ) 3
-3 azkon— 7 In@n(K3nmg SIN Znm +Kanmi €OS Znm)— 7 a2 Kanmi = Fa(an, G, Anm, V) (35)
where
Anm :pnT1 _3ﬁn +:Bm (36)
Vn :aﬂTl_ﬁn (37)

For all relevant coefficients, the last subscript R denotes real part and I denotes imaginary part of these coefficients,
respectively. For steady-state solutions, a;, =am =/mm =7, =0

. 1 1 . 1
Ank1nk —2(fo €OS 7y~ SIN )= 5 akonr— 7 a2 A (K3nmRr €OS Anm—K3nmi SIN Agm)— 1 02 Kanmg =0 (38)

. 1 1 . 1
G+ Ak —2(fig SiN Y, 4 for COS ) — 7 @ kani— = @2 am(Kzpmp SIN Anm + K3nmi €OS Anm)— 1 @2 kanm =0 (39)

4
1, 14 ; . 1,
amkl mR— Z amemR* Z an(kSmnR COS Anm + kSmnI sin )vnm)* Z anam k4mnR =0 (40)
1, 1, . 1,
Am(30n—pPp) +Amkimi— 2%m komr + 1 @y, (Ksmnr SIN Anm —Ksmni COS Anm)— a a;amKamn =0 (41)

From (40), if ks,»,,=0, a natural consequence is a,,=0, and the second mode cannot be excited. Hence in addition to the
necessary condition of mth mode being near to three times the nth mode, for 3:1 internal resonances to occur in such
systems, the sufficiency condition is that

_ f(])vm{cl (Yn, Yn, Yn)+i00nCo(Yn, Yn, Yn)}
2im [§YmYm dX+ [3YmLa(Ym) dx

The Jacobian matrix is evaluated to determine the stability of fixed points

[oFy oF oF R

0an, 0am Olnm OV

o oF oF o

0ay, 0am Olnm OVp

oFs oF oFy oF; | On=Cho “3)

0an 0am Olnm 0V, | Gm =0mo

oFs oy oFs OFy | Jam=/nmo

| 0an  Oam O2nm n | Vn="Yno

kSmn

#0 (42)

Eigenvalues of the Jacobian matrix should not have positive real parts for stability. The approximate solution of the
system is

W(X, t; €)an{cos(Qt—y,) Ynr—SIin(Qt—7,) Yni} + am{cos(3Qt =37, + Anm) Ymg—SINQt =37, + Anm) Yimi} + O(€) (44)

where Y, can be decomposed into its real and imaginary parts. a,, am,, Y, and 4., in the approximate solution are governed
by Egs. (32)-(35). Hence, for the general problem, an approximate solution algorithm is developed. The algorithm will be
applied to two specific problems in the next section. Note that the approximate solution developed can trivially
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be extended to three spatial dimensions by expressing the eigenfunctions in three dimensions. A restriction of the solution
is the involvement of only two modes linked to each other via 3:1 internal resonance and natural frequencies should be
checked to avoid other modes of involvement through some kind of internal resonances.

4. Applications

In this section, the general solution algorithm will be applied to two specific vibration problems. Both problems are
from axially moving continua. See references [14-22] for some example studies on axially moving continua vibrations. One
of the problems contains integro-differential type nonlinearity and the other differential type nonlinearity. Although the
nonlinearities are much different in nature, their common feature of being cubic nonlinearity makes them suitable
applications for the general model considered.

4.1. Axially moving Euler-Bernoulli beam
For an axially moving Euler-Bernoulli beam, following [11,14], the dimensionless equation of motion is

W+ W—1)W" + 20w +vfW" + euw = eF cos Qt + o rv,v\/’/ w? dx (45)

w(0,t)=w(1,t)=w"0,t)=w’(1,t)=0 (46)

where

w* Xx* P S " /——
w= T,X: T’t:t P/[)ALZ UOZUO/\/P/pA,UgZ\/EA/P,Uf: EI/PLZ (47)

x* is the coordinate along the axial direction, t* is the time, L is the length, P is the axial tension force, EI is the flexural
rigidity, A is the area of beam, p is the density, and w* is the transverse displacement. Variables with asterisk denote
dimensional quantities. Viscous damping and harmonic excitation are added to the equation with introducing a book-
keeping small parameter ¢ to re-order the relative quantities of the terms.

For some example studies on axially moving Euler-Bernoulli beams see [14-18]. For this special problem, the operators
are defined to be as follows

Li(w)= (Ug—])W/, + U%le (48)
Lz(W) = 21/0\/\‘// (49)
L3(W) = uw (50)
1 2.0, ! /2
C1(w,w,w):§vfw / w*dx (51)
0
CGw,w,w)=0 (52)
The associated eigenfunction-eigenvalue problem given in Eqgs. (11) and (12) reduces to
VEYY + (W§—1)Yi +2v0iwn Yy —}Y, =0 (53)
Yi(0)=Yn(1)=Yy (0)=Yy (1)=0 (54)

The solution is [11,14]

Yn(x):(:] lﬁlvzx (B4n Bh“)(elljgnie,ﬁm) '521" (ﬁ‘m ﬁln)(e'/jane'/jln) ﬁ X
( [)’ n— ﬁzn )(eth3n —eiban) ( ﬁ = ﬁ3n)(e1ﬁ2n 7er/f3n)

—_ iB3n _piPin iBon _eibin
+<_1+(:B4n .Bln)(e e )+(ﬁ4n ﬁ]n)(e e )> 1[34”)(} (55)

(B3, — P2 )(eBn—eiba) (B2 — B3 )€ —eibsn)
where f;, satisfy the dispersive relation

V2 B+ (=3B —2v00n By —? =0 i=1,2,3,4..., n=12,.... (56)
associated with the support condition [11,14] as follows

(ePin+Pan)  gitBan+ ﬁ“"))(lﬁn _l}%n)(ﬂgn _ﬁin) +(elPrntFan) g pilhan + ﬁm))(ﬁ%n _ﬁin)(ﬁgn _ﬁ%n)
+ (el(/fzn +Bsn) +e'(ﬁl" +/f4"))(ﬂ%n7ﬁﬁn)(ﬁgnfﬁ§n) =0 (57)
wy and P, can be numerically calculated using the dispersive relation and the support condition.
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In Fig. 1, the fundamental frequency versus the axial transport velocity graphics are shown for different flexural
stiffness values. Natural frequencies increase with increase in flexural stiffness values.

The next step is to calculate the coefficients in the amplitude and phase modulation equations. Substituting the
operators (48)-(52) into (25)-(30) yields

ey — iwn,uf(],ann dx (58)
N 2wy [ YaYn dx 4200 [AYh Vi dx
1 ~7
= 1 [oFYndx (59)
2in [oYnYn dx+2vo [oYh Vi dx
ey — %vf{ZféVnY{{ dxf(l)Y,’, Y, dx+fé7n7{1’ dxféY’fl dx} (60)
" 2in [ YnY n dx+2v0 [oYa Yi dx
ko = 1V [3¥aYi dx [0V dx+2 [0V YH dx [}V Vi dx} 61)
nm 2icon_[(1)Yn7n dx+2vof(l)Y,’1 Y, dx
k= VE1 JoYnYm dx[oVim Y dx+ [oVaYh dX[oYin Yin dx+ [oVaVi dx[oYm Vi dx) 62)
" 2icon [§YnY n dx+2v0 [§Ya Yo dx
LoV Yy dx[oY'2dx)
k5mn: 2.0 201 (63)

2i0m [oYmYm dX+2v0 [ Yin Yim dx

Substitution of Y,,(x) further into these equations yields the numerical values for the coefficients. For v9=0.4, and vf=0.2,
the first two frequencies (n=1, m=2) are w;=3.39841, w,=9.78513, which are approximately 3:1 in ratio. If v,=0.2, u=0.1,
F=10 is further selected, the coefficients are k;;=0.04725+0.00001i, k;,=0.05010+0.00007i, k,;=0.02034
+1.95820i, ky;=—0.15044+12.26200i, k312=0.23640+0.03050i, k41>=0.02505+6.35310i, k421=0.02165+2.20570i, ks3,=
—0.01297 —0.02022i, and f;=—0.36369+0.14938i.

In Fig. 2, the frequency-response curves for the first two modes are depicted. Through external excitation, energy is
transferred to the first mode. Some of the energy gained is transferred further from the first mode to the second mode via
3:1 internal resonance. The energy transfer region is zoomed over the figure to show the details. In Fig. 3a, only the
response of the first mode and in Fig. 3b, only that of the second mode is given in detail. Stable (solid) and unstable
(dashed) regions can be seen better in the zoomed regions.

Fig. 1. Fundamental frequencies versus axial transport velocities for various flexural stiffness values.
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Fig. 2. Frequency-response curves for the first two modes (vo=0.4, v=0.2, v,=0.2, £=0.1, F=10, w,=3.39841, and ®,=9.78513).
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Fig. 3. (a) Frequency-response curve for the first mode (v9=0.4, vy=0.2, v,=0.2, u=0.1, F=10, ,=3.39841, and »,=9.78513) and (b) frequency-response
curve for the second mode (v0=0.4, vy=0.2, v,=0.2, u=0.1, F=10, »,1=3.39841, and ®,=9.78513).

The plots shown in Figs. 4a and b demonstrate the influence of variation of the amplitude of the excitation on the
amplitudes of the response with the frequency of the excitation held fixed (force-response curves, ;=2.5). In Fig. 4a, both
modes are given in the same graph while in Fig. 4b, only the second mode response is given to show the details. Stable
(solid) and unstable (dashed) solutions are shown on the graphs. Two saddle node bifurcation points one close to f;=0 and
the other greater than f;=1 are observed.

The viscous damping coefficient is increased in Figs. 5-7 to u=0.8. This affects the first two coefficients only,
k11=0.37797+0.00004i, and k;,=0.40084+0.00053i, with the remaining coefficients being identical. The frequency-
response curve for the first mode is given in Fig. 5a and that of the second mode is given in Fig. 5b. All amplitudes decrease
with an increase in viscosity.

In Fig. 6, force-response curves are given for the damped case for both modes of vibration. To see the details where jump
occurs and stable and unstable solutions bifurcate, in Figs. 7a and b, the responses are shown seperately. The saddle node
bifurcation points appear at f;=0.4 and f;=0.8 approximately. Note that within the parameter range considered, the
response of the externally excited mode is much higher than that of the internally excited mode.
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Fig. 4. (a) Force-response curves for the first and the second modes together (v9=0.4, v/=0.2, v,=0.2, u=0.1, 61=2.5, »1=3.39841, and »,=9.78513) and
(b) force response curve for the second mode only (vo=0.4, vf=0.2, v,=0.2, u=0.1, 61=2.5, 01=3.39841, and w,=9.78513).
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Fig. 5. (a) Frequency-response curve for the first mode (vo=0.4, vy=0.2, v,=0.2, ©=0.8, F=10, ®1=3.39841, and ®w,=9.78513) and (b) frequency-response
curve for the second mode (v=0.4, v/=0.2, v,=0.2, u=0.8, F=10, w;=3.39841, and ®,=9.78513).

4.2. Axially moving viscoelastic beam

The second model represents nonlinear vibrations of an axially moving viscoelastic beam. Following [11,19], the
equation of motion is

W+ W3 —1W' + 200w’ + 3w + o' + g = ¢F cos Qt+8{j V2w'w? 4 20w ww” + ok w'? } (64)

with boundary conditions
w(0,t) =w(1,t) =w’(0,t) =w’(1,£) =0 (65)

where

EA El In An
Ve=\/—=, Vi=1{\/=s, O= ., k= 66
TN T VP2 13/pAP L/pAP (66)
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Fig. 6. Force-response curves for the first and the second modes together (vo=0.4, v/=0.2, v,=0.2, u=0.8, ®1=3.39841, w,=9.78513, and 7,=2).
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Fig. 7. (a) Force-response curve for the first mode only; vo=0.4, vf=0.2, v,=0.2, 1=0.8, w1=3.39841, »,=9.78513, and ¢, =2 and (b) force response curve
for the second mode only (vo=0.4, vf=0.2, v,=0.2, £=0.8, ®1=3.39841, ©,=9.78513, and 0,=2).

1 represents viscosity, and o and k are dimensionless parameters related to the viscosity. For similar studies on
viscoelastic axially moving beams, the reader is referred to [19-22]. Here, the forced vibration case is considered whereas
in [19-22] parametric resonances were considered.

For this specific problem, the general operators are defined as,

Liw) = @§—w" +viw!" (67)
Ly (W) = 20gW’ (68)
Ls(W) = o™ + puw (69)
Ci(w, w, w) = %v?w”w’z (70)

Co (W, W, W) = 20kWw'w'w” + okw” w2 (71)
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The associated eigenvalue-eigenfunction problem as given in Eqgs. (11) and (12) reduces to

VEYY + W)Y +2v0i0, Yy —0fYn =0 (72)

Yn(0)=Yo()=Yq (O)=Yy (1H=0 (73)
for which the solution is
eifinx _ (ﬁlen _ﬂ%n)(eiﬁ% —e'fn) eiPanx _ (ﬁlen _ﬁ%n)(eiﬂzn —elfn) eiBanx
(B5,— B3 )(eifsn —eiban) (B3, — P2, (@B —eiban)

2 _ B2 yceibsn _pibin 2 _ 32 (el _eibin .
+ <_] + (ﬁzzln ﬁ;n)(e e' ) + (ﬁézln ﬁ;n)(e e‘ )> elﬂanx} (74)
(Ban—PBan)(€Pn—etba) — (Ba,—P5,)(ePn—ethsn)

Ya(X) = ¢ {

where f;, satisfies the dispersive relation
V? B+ (=3) B —2000n By —w2 =0 i=1,2,3,4..., n=1.2,.... (75)

The support condition is also found similarly by application of the boundary conditions

(e ntan) o Uon By B, — B3, (BB + (€1 n o) o Pan by B3, — ) (B3, —B1)
(@ o) ot By (5 — ) (B30 —B3) = O (76)

Numerical values of w, and f;, can be calculated by using the dispersive relation and the support condition in a similar
way.

The coefficients of amplitude and phase modulation equations are found by substituting the operators (67)-(71) into
(25)-(30)

iwn fé(ocY,ﬁV +uYn)Y,dx

kin= — = —— (77)
2in [oYnYndx+2vo [oYh Yrdx
%féFVn dx
o= ————=2 —— (78)
2iwn [oYnYndx+2vo [oYh Yrdx
b _ V2 Jo¥nYi YaYh dx+ [oYn Y Y72 dx)+iconok{ [oYn Y Y2 dx+2[3YaYh Yh Vi dx} (79)
2n =

Ziwnf(])YnYH dx+2v0f(1)Y;l Y, dx

32 [VaYi Vi dx+2[0VaYH Yiu Vi dX)—2i000k(2 [ ¥V Vi Yin dx+ [oVaY 2V dX)+iomok(2 [0V a¥h YA Yin dx+ (VoY '2Ye dx)

k3 = — —
" 2icon [§Yn Yy dx+2v0 [§Yh Y dx
(80)
K — 3022 [0V Vi Yin Yi dX4+2[3Y Y Yin Yin dX4+2[0YnY i Yin Yo dX}+i0aok(2 3V nYn Yin Y dX+2 [0V nYH Yin Yin dx+2[0Y o Yh Vi Yir dx}
" i [§Ya Vo dx+2v0 [§Yi Vi dx
(81)
3,27 1y 7 \r2 . 17 o2
sV [oYmYn Y5 dx}+3iwonok{ [ Y Y Y dx}
kSmn = (82)

2im [§YmYm dx+2v0 [ Vi Y dx

By substituting Y,(x) further into these equations yields the numerical values for the coefficients. For v9=0.4, and
vf=0.2, the first two frequencies are w,=3.39841, and w,=9.78513, which are approximately 3:1 in ratio. Selecting
further «=.001, k=1, v,=0.2, u=0.1, and F=10, the coefficients are k;,=0.10113+0.00082i, ki2=0.81902—0.001661,
kz1=—0.13657+2.95980i, ky;=—3.11260+19.16000i, k31,=0.98000—0.43575i, k412=—0.67517+19.30800i, k4,=—1.01860+
6.26380i, ksz1=—0.04322 —0.10754i, and f;=—0.36369+0.14938i.

In Fig. 8, frequency-response curves are drawn. In Fig. 8a, both responses are shown on the same graph whereas, in
Fig. 8b, response of the second mode is shown seperately to outline the details. Energy transfer from the excited first mode
to the second mode via 3:1 internal resonance can be seen from the graphs.

The plots shown in Figs. 9a and b demonstrate the influence of the variation of the amplitude of the excitation on the
amplitudes of the response with the frequency of the excitation held fixed (force-response curves, 6;=2.5). In Fig. 9a, both
modes are shown on the same graph and in Fig. 9b; only the energy transferred mode, which is the second mode is shown
to outline the details. Note that, similar to the previous problem, within the parameter range considered, the response of
the externally excited mode is always higher than that of the internally excited mode.
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Fig. 8. (a) Frequency-response curves for the first and the second modes together (v=0.4, vf=0.2, v,=0.2, u=0.1, F=10, 2=0.001, k=1, ®,=3.39841, and
®2=9.78513) and (b) frequency-response curve for the second mode only (vo=0.4, vf=0.2, v,=0.2, u=0.1, F=10, 2=0.001, k=1, ®,=3.39841, and
®,=9.78513).
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Fig. 9. (a) Force-response curves for the first and the second modes together (vo=0.4, vf=0.2, v,=0.2, £=0.1, 6;=2.5, 2=0.001, k=1, w,=3.39841, and
®2=9.78513) and (b) force-response curve for the second mode only (vo=0.4, v=0.2, v,=0.2, u=0.1, ¢,=2.5, 2=0.001, k=1, w,=3.39841, and
®,=9.78513).

5. Concluding remarks

A general solution procedure is developed for vibrations of continuous systems with cubic nonlinearities. The arbitrary
linear and cubic operators with spatial and time derivatives allow to generalize a wide range class of problems including
gyroscopic systems. The approximate solutions, the amplitude and phase modulation equations are derived in terms of the
operators. External excitation of one of the modes and excitation of another mode via 3:1 internal resonance case is
considered. The method of multiple scales is employed in the analysis. Usually 3:1 ratio is satisfied between the natural
modes yet the second mode cannot be excited via internal resonances. The sufficiency condition for such resonances to
occur is derived for a general system. If the linear mode shapes and the form of the cubic nonlinearities are given, the
existence of such internal resonances can easily be checked a priori from Eq. (42). The formalism developed is applied
to two different problems namely the axially moving Euler-Bernoulli beam and the axially moving viscoelastic beam.
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Frequency-response and force-response curves are presented and the energy transfer between the modes via internal
resonance are outlined in the graphs. The algorithm developed may be applied to many more problems in nonlinear
vibrations of continuous systems.

One further advantage of the study is that, mathematical models with cubic nonlinearities may be very complex.
Especially, the nonlinear terms may be very lengthy and the algebra involved in search of approximate solutions increases
tremendously for such systems. Here, in this study the solutions are given in a very compact form and the details of the
specific calculations can be checked using our general solution and the general structure of the coefficients defined in the
analysis.
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